Title :
Automatic recognition of Parkinson´s disease using surface electromyography during standardized gait tests
Author :
Kugler, Patrick ; Jaremenko, Christian ; Schlachetzki, Johannes ; Winkler, J. ; Klucken, Jochen ; Eskofier, B.
Author_Institution :
Comput. Sci. Dept., Friedrich-Alexander Univ. of Erlangen-Nuremberg, Erlangen, Germany
Abstract :
Diagnosis and severity staging of Parkinsons disease (PD) relies mainly on subjective clinical examination. To better monitor disease progression and therapy success in PD patients, new objective and rater independent parameters are required. Surface electromyography (EMG) during dynamic movements is one possible modality. However, EMG signals are often difficult to understand and interpret clinically. In this study pattern recognition was applied to find suitable parameters to differentiate PD patients from healthy controls. EMG signals were recorded from 5 patients with PD and 5 younger healthy controls, while performing a series of standardized gait tests. Wireless surface electrodes were placed bilaterally on tibialis anterior and gastrocnemius medialis and lateralis. Accelerometers were positioned on both heels and used for step segmentation. Statistical and frequency features were extracted and used to train a Support Vector Machine classifier. Sensitivity and specificity were high at 0.90 using leave-one-subject-out cross-validation. Feature selection revealed kurtosis and mean frequency as best features, with a significant difference in kurtosis (p=0.013). Evaluated on a bigger population, this could lead to objective diagnostic and staging tools for PD.
Keywords :
biomedical electrodes; diseases; electromyography; feature extraction; gait analysis; medical signal processing; signal classification; support vector machines; EMG; accelerometers; automatic Parkinson´s disease recognition; disease progression monitoring; dynamic movements; feature extraction; frequency features; gastrocnemius lateralis; gastrocnemius medialis; patient therapy; pattern recognition; severity staging; standardized gait tests; statistical features; step segmentation; support vector machine classifier; surface electromyography; tibialis anterior; wireless surface electrodes; Electrodes; Electromyography; Feature extraction; Muscles; PD control; Parkinson´s disease; Sensors;
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE
Conference_Location :
Osaka
DOI :
10.1109/EMBC.2013.6610865