DocumentCode :
63801
Title :
Noise Parameter Estimation for Poisson Corrupted Images Using Variance Stabilization Transforms
Author :
Xiaodan Jin ; Zhenyu Xu ; Hirakawa, Keisuke
Author_Institution :
Harvard Univ., Cambridge, MA, USA
Volume :
23
Issue :
3
fYear :
2014
fDate :
Mar-14
Firstpage :
1329
Lastpage :
1339
Abstract :
Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.
Keywords :
Poisson distribution; image denoising; image sensors; Poisson corrupted image; Poisson distribution; noise parameter estimation; photon arrival process; stochastic nature; variance stabilization transforms; Image denoising; Noise; Noise reduction; Parameter estimation; Photonics; Wavelet transforms; Image denoising; Poisson; noise parameter estimation; variance stabilization;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2014.2300813
Filename :
6714542
Link To Document :
بازگشت