• DocumentCode
    63801
  • Title

    Noise Parameter Estimation for Poisson Corrupted Images Using Variance Stabilization Transforms

  • Author

    Xiaodan Jin ; Zhenyu Xu ; Hirakawa, Keisuke

  • Author_Institution
    Harvard Univ., Cambridge, MA, USA
  • Volume
    23
  • Issue
    3
  • fYear
    2014
  • fDate
    Mar-14
  • Firstpage
    1329
  • Lastpage
    1339
  • Abstract
    Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.
  • Keywords
    Poisson distribution; image denoising; image sensors; Poisson corrupted image; Poisson distribution; noise parameter estimation; photon arrival process; stochastic nature; variance stabilization transforms; Image denoising; Noise; Noise reduction; Parameter estimation; Photonics; Wavelet transforms; Image denoising; Poisson; noise parameter estimation; variance stabilization;
  • fLanguage
    English
  • Journal_Title
    Image Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7149
  • Type

    jour

  • DOI
    10.1109/TIP.2014.2300813
  • Filename
    6714542