DocumentCode :
639864
Title :
Achieving Bayes MMSE performance in the sparse signal + Gaussian white noise model when the noise level is unknown
Author :
Donoho, David ; Reeves, G.
Author_Institution :
Dept. of Stat., Stanford Univ., Stanford, CA, USA
fYear :
2013
fDate :
7-12 July 2013
Firstpage :
101
Lastpage :
105
Abstract :
Recent work on Approximate Message Passing algorithms in compressed sensing focuses on `ideal´ algorithms which at each iteration face a subproblem of recovering an unknown sparse signal in Gaussian white noise. The noise level in each subproblem changes from iteration to iteration in a way that depends on the underlying signal (which we don´t know!). For such algorithms to be used in practice, it seems we need an estimator that achieves the MMSE when the noise level is unknown. In this paper we solve this problem using convex optimization, Stein Unbiased Risk Estimates and Huber Splines.
Keywords :
Bayes methods; Gaussian noise; compressed sensing; convex programming; mean square error methods; message passing; white noise; Bayes MMSE performance; Gaussian white noise model; Huber splines; Stein unbiased risk estimates; approximate message passing algorithms; compressed sensing; convex optimization; unknown sparse signal; Compressed sensing; Convex functions; Estimation; Information theory; Message passing; Robustness; Splines (mathematics);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
Conference_Location :
Istanbul
ISSN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2013.6620196
Filename :
6620196
Link To Document :
بازگشت