• DocumentCode
    639907
  • Title

    A reduced-complexity algorithm for polynomial interpolation

  • Author

    Yuan Zhu ; Siyun Tang

  • Author_Institution
    Dept. of Software Eng., Sun Yat-sen Univ., Guangzhou, China
  • fYear
    2013
  • fDate
    7-12 July 2013
  • Firstpage
    316
  • Lastpage
    320
  • Abstract
    Most traditional bivariate polynomial interpolation algorithms need to construct the Gröbner basis of a module for the interpolation result. In this paper, we present an algorithm that constructs the basis for a gradually extending submodule to save computation, based on a partial order of the elements of the submodule´s Gröbner basis. It also can be generalized for negative weighted interpolation and multivariate interpolation.
  • Keywords
    computational complexity; interpolation; polynomial approximation; bivariate polynomial interpolation algorithm; gradually extending submodule; multivariate interpolation; negative weighted interpolation; reduced-complexity algorithm; submodule Grobner basis; Complexity theory; Decoding; Interpolation; Polynomials; Reed-Solomon codes; Software algorithms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
  • Conference_Location
    Istanbul
  • ISSN
    2157-8095
  • Type

    conf

  • DOI
    10.1109/ISIT.2013.6620239
  • Filename
    6620239