DocumentCode :
639908
Title :
Optimal codes in the Enomoto-Katona space
Author :
Yeow Meng Chee ; Han Mao Kiah ; Hui Zhang ; Xiande Zhang
Author_Institution :
Sch. of Phys. & Math. Sci., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2013
fDate :
7-12 July 2013
Firstpage :
321
Lastpage :
325
Abstract :
Coding in a new metric space, the Enomoto-Katona space, is considered recently in connection to the study of implication structures of functional dependencies and their generalizations in relational databases. The central problem here is the determination of C(n, k, d), the size of an optimal code of length n, weight k, and distance d in the Enomoto-Katona space. The value of C(n, k, d) is known only for some congruence classes of n when (k, d) ∈ {(2, 3), (3, 5)}. In this paper, we obtain new infinite families of optimal codes in the Enomoto-Katona space. In particular, C(n, k, 2k-1) is determined for all sufficiently large n satisfying either n ≡ 1 mod k and n(n-1) ≡ 0 mod 2k2, or n ≡ 0 mod k.
Keywords :
codes; Enomoto-Katona space; metric space; optimal codes; Color; Encoding; Measurement; Relational databases; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
Conference_Location :
Istanbul
ISSN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2013.6620240
Filename :
6620240
Link To Document :
بازگشت