DocumentCode :
640977
Title :
Identifier based interval type-2 fuzzy tracking control
Author :
Tsung-Chih Lin ; Chung-Ching Wang ; I-Shin Liu ; Balas, Valentina E.
Author_Institution :
Dept. of Electron. Eng., Feng-Chia Univ., Taichung, Taiwan
fYear :
2013
fDate :
7-10 July 2013
Firstpage :
1
Lastpage :
8
Abstract :
Based on system identifier, interval type-2 fuzzy neural network (IT2FNN) tracking control for a class of unknown nonlinear dynamic system is developed in this paper. In order to fully handle or accommodate the linguistic and numerical uncertainties associated with dynamic unstructured environments, an IT2FNN controller equipped with a learning algorithm is developed. In the meantime, an IT2FNN identifier is incorporated into the IT2FNN controller to predict the system sensitivity of the unknown nonlinear dynamic system. The comparison between type-1 FNN (T1FNN) controller and IT2FNN controller is given to sufficiently illustrate the effectiveness of the proposed control scheme.
Keywords :
fuzzy control; identification; learning (artificial intelligence); neurocontrollers; nonlinear control systems; numerical analysis; sensitivity analysis; uncertain systems; IT2FNN identifier; IT2FNN tracking control; T1FNN controller; dynamic environments; learning algorithm; linguistic uncertainties; numerical uncertainties; system identifier-based interval type-2 fuzzy tracking control; system sensitivity prediction; type-1 FNN controller; unknown nonlinear dynamic system; Educational institutions; Fuzzy control; Fuzzy neural networks; Nonlinear dynamical systems; Pragmatics; Trajectory; Uncertainty; Interval type-2 fuzzy neural network; identification; nonlinear systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ), 2013 IEEE International Conference on
Conference_Location :
Hyderabad
ISSN :
1098-7584
Print_ISBN :
978-1-4799-0020-6
Type :
conf
DOI :
10.1109/FUZZ-IEEE.2013.6622428
Filename :
6622428
Link To Document :
بازگشت