DocumentCode :
642512
Title :
Robust kernel-based regression using Orthogonal Matching Pursuit
Author :
Papageorgiou, George ; Bouboulis, Pantelis ; Theodoridis, S.
Author_Institution :
Dept. of Inf. & Telecommun., Univ. of Athens, Athens, Greece
fYear :
2013
fDate :
22-25 Sept. 2013
Firstpage :
1
Lastpage :
6
Abstract :
Kernel methods are widely used for approximation of nonlinear functions in classic regression problems, using standard techniques, e.g., Least Squares, for denoising data samples in the presence of white Gaussian noise. However, the approximation deviates greatly, when impulse noise outlying the data enters the scene. We present a robust kernel-based method, which exploits greedy selection techniques, particularly Orthogonal Matching Pursuit (OMP), in order to recover the sparse support of the outlying vector; at the same time, it approximates the non-linear function via the mapping to a Reproducing Kernel Hilbert Space (RKHS).
Keywords :
Hilbert spaces; compressed sensing; function approximation; greedy algorithms; impulse noise; iterative methods; nonlinear functions; regression analysis; OMP; RKHS; greedy selection techniques; impulse noise; mapping; nonlinear function approximation; orthogonal matching pursuit; outlying vector; reproducing kernel Hilbert space; robust kernel-based regression; sparse support; Complexity theory; Gaussian noise; Kernel; Matching pursuit algorithms; Robustness; Vectors; Greedy Algorithms; KernelBased Regression; OrthogonalMatching Pursuit (OMP); Outliers; Reproducing Kernel Hilbert Space (RKHS); Robust Least Squares;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2013 IEEE International Workshop on
Conference_Location :
Southampton
ISSN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2013.6661978
Filename :
6661978
Link To Document :
بازگشت