DocumentCode
642835
Title
Active learning enhanced semi-automatic annotation tool for aspect-based sentiment analysis
Author
Smatana, Miroslav ; Koncz, P. ; Smatana, Peter ; Paralic, Jan
Author_Institution
Dept. of Cybern. & Artificial Intell., FEI TU of Kosice, Kosice, Slovakia
fYear
2013
fDate
26-28 Sept. 2013
Firstpage
191
Lastpage
194
Abstract
Aspect-based sentiment analysis has become popular research field which allows the quantification of textual evaluations of different aspects of products and services. Methods of aspect-based sentiment analysis built on machine learning usually depend on manually annotated training corpora. In order to facilitate the processes of their creation, annotation tools dedicated to this purpose are needed. In this work we proposed a semi-automatic annotation tool which uses active learning to increase the effectiveness of the documents annotation. The use of active learning adapted to the needs of aspect-based sentiment analysis is the main difference between the proposed solution and existing annotation tools. We applied it in the domain of hotels evaluations. The results of realized experiments confirmed the faster increase of the annotation suggestions quality in terms of F1-measure in comparison to the scenario without active learning.
Keywords
emotion recognition; human factors; learning (artificial intelligence); psychology; text analysis; F1-measure; active learning enhanced semiautomatic annotation tool; aspect-based sentiment analysis methods; document annotation; hotel evaluations; machine learning; manually annotated training corpora; textual evaluation quantification; Dictionaries; Learning systems; Manuals; Ontologies; Semantics; Text categorization; Training;
fLanguage
English
Publisher
ieee
Conference_Titel
Intelligent Systems and Informatics (SISY), 2013 IEEE 11th International Symposium on
Conference_Location
Subotica
Print_ISBN
978-1-4799-0303-0
Type
conf
DOI
10.1109/SISY.2013.6662568
Filename
6662568
Link To Document