DocumentCode
646537
Title
Optimal control via initial conditions of a time delay hyperbolic system with the Neumann boundary condition
Author
Kowalewski, Adam
Author_Institution
Inst. of Automatics & Biomed. Eng., AGH Univ. of Sci. & Technol., Cracow, Poland
fYear
2013
fDate
26-29 Aug. 2013
Firstpage
471
Lastpage
474
Abstract
Various optimization problems associated with the optimal control of distributed hyperbolic systems with time delays appearing in the boundary conditions have been studied recently in Refs. [2]-[7] respectively. In this paper, we consider an optimal control problem for a linear hyperbolic system in which multiple time delays appear in the state equation. The initial conditions are given by control functions. Sufficient conditions for the existence of a unique solution of such hyperbolic equations with the Neumann boundary conditions are presented. The performance functional has the quadratic form. The time horizon T is fixed. Finally, we impose some constraints on the control. Making use of the Lions scheme [8], necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance functional and constrained control are derived.
Keywords
delay systems; hyperbolic equations; linear systems; optimal control; optimisation; Lions scheme; Neumann boundary condition; constrained control; control functions; distributed hyperbolic systems; initial conditions; linear hyperbolic system; multiple time delays; necessary conditions; optimal control problem; optimization problems; quadratic performance functional control; state equation; sufficient conditions; time delay hyperbolic system; Boundary conditions; Delay effects; Delays; Educational institutions; Equations; Optimal control; Optimization;
fLanguage
English
Publisher
ieee
Conference_Titel
Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on
Conference_Location
Miedzyzdroje
Print_ISBN
978-1-4673-5506-3
Type
conf
DOI
10.1109/MMAR.2013.6669955
Filename
6669955
Link To Document