DocumentCode :
649312
Title :
Systematic synthesis of cascaded continuous-time ΔΣ ADCs for wideband data conversion
Author :
Balagopal, S. ; Kehan Zhu ; Saxena, Vishal
Author_Institution :
Electr. & Comput. Eng. Dept., Boise State Univ., Boise, ID, USA
fYear :
2013
fDate :
4-7 Aug. 2013
Firstpage :
860
Lastpage :
863
Abstract :
Continuous-time delta sigma (CT-ΔΣ ) ADCs are gaining wider adoption in data conversion systems primarily aided by their robustness to mismatch in nano-scale CMOS technologies and inherent anti-alias filtering. In past, several techniques have been employed to achieve wider conversion bandwidths by either scaling the designs to a lower technology node or by adopting architectures with lower oversampling ratios (OSR). Cascaded, or MASH, CT-ΔΣ ADCs have been explored to achieve conversion bandwidths by cascading lower order ΔΣ loops followed by a digital coarse quantization noise canceling filter (NCF). Another technique which has recently been explored is to increase the quantizer sampling rate, in a given technology node, by absorbing excess loop-delay (ELD) greater than one clock cycle (Ts) in the loop. However, these techniques individually cannot sufficiently meet the ever increasing bandwidth demand for the broadband wireless applications. Further, the ELD > Ts designs require an extra modulator order to achieve the same noise-shaping performance as the low-speed ELD <; 0.5 Ts prototype, necessitating high-order CT-ΔΣ loops. As a step towards combing the two techniques, we propose a systematic design method to synthesize 3-2 MASH CT-ΔΣ modulators to achieve higher conversion bandwidths, BW ≥ 40MHz in a 130-nm CMOS technology.
Keywords :
CMOS digital integrated circuits; delta-sigma modulation; integrated circuit design; nanoelectronics; 3-2 MASH CT-ΔΣ modulators; CT-ΔΣ ADC systematic synthesis; OSR; antialias filtering; broadband wireless applications; cascaded continuous-time ΔΣ ADC systematic synthesis; data conversion systems; digital coarse quantization NCF; digital coarse quantization noise canceling filter; excess loop-delay; high-order CT-ΔΣ loops; low-speed ELD; lower order ΔΣ loops; nanoscale CMOS technologies; oversampling ratios; quantizer sampling rate; size 130 nm; Analog-digital converter (ADC); MASH; cascaded modulator; continuous-time (CT); delta-sigma (ΔΣ); feedforward;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (MWSCAS), 2013 IEEE 56th International Midwest Symposium on
Conference_Location :
Columbus, OH
ISSN :
1548-3746
Type :
conf
DOI :
10.1109/MWSCAS.2013.6674785
Filename :
6674785
Link To Document :
بازگشت