Title :
Hardware Abstraction and Protocol Optimization for Coded Sensor Networks
Author :
Nistor, Maricica ; Lucani, Daniel E. ; Barros, Joao
Author_Institution :
Inst. de Telecomun., Univ. do Porto, Porto, Portugal
Abstract :
The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor´s hardware, while assuming that the number of transmitted bits is the dominating factor behind the system´s energy consumption. A closer look at the hardware specifications of common sensors reveals, however, that other equally important culprits exist, such as the reception and processing energy. Hence, there is a need for a more complete hardware abstraction of a sensor node to reduce effectively the total energy consumption of the network by designing energy-efficient protocols that use such an abstraction, as well as mechanisms to optimize a communication protocol in terms of energy consumption. The problem is modeled for different feedback-based techniques, where sensors are connected to a base station, either directly or through relays. We show that for four example platforms, the use of relays may decrease up to 4.5 times the total energy consumption when the protocol and the hardware are carefully matched. We conclude that: 1) the energy budget for a communication protocol varies significantly on different sensor platforms; and 2) the protocols can be judiciously adapted to the underlying hardware. The results are cross-validated using real-life measurements.
Keywords :
codes; energy conservation; energy consumption; protocols; wireless sensor networks; WSN; base station; coded sensor network; communication protocol; energy consumption; energy-efficient protocol; feedback-based technique; hardware abstraction; protocol optimization; wireless sensor network; Encoding; Energy consumption; Hardware; Protocols; Relays; Topology; Wireless sensor networks; Energy consumption; hardware abstraction; protocol design; sensor networks;
Journal_Title :
Networking, IEEE/ACM Transactions on
DOI :
10.1109/TNET.2014.2310171