DocumentCode :
663404
Title :
Massive uniform manipulation: Controlling large populations of simple robots with a common input signal
Author :
Becker, A. ; Habibi, Golnaz ; Werfel, Justin ; Rubenstein, Michael ; McLurkin, James
Author_Institution :
Comput. Sci. Dept., Rice Univ., Houston, TX, USA
fYear :
2013
fDate :
3-7 Nov. 2013
Firstpage :
520
Lastpage :
527
Abstract :
Roboticists, biologists, and chemists are now producing large populations of simple robots, but controlling large populations of robots with limited capabilities is difficult, due to communication and onboard-computation constraints. Direct human control of large populations seems even more challenging. In this paper we investigate control of mobile robots that move in a 2D workspace using three different system models. We focus on a model that uses broadcast control inputs specified in the global reference frame. In an obstacle-free workspace this system model is uncontrollable because it has only two controllable degrees of freedom - all robots receive the same inputs and move uniformly. We prove that adding a single obstacle can make the system controllable, for any number of robots. We provide a position control algorithm, and demonstrate through extensive testing with human subjects that many manipulation tasks can be reliably completed, even by novice users, under this system model, with performance benefits compared to the alternate models. We compare the sensing, computation, communication, time, and bandwidth costs for all three system models. Results are validated with extensive simulations and hardware experiments using over 100 robots.
Keywords :
manipulators; mobile robots; position control; 2D workspace; bandwidth costs; biologists; broadcast control inputs; degree of freedom; direct human control; global reference frame; large robot population control; massive uniform manipulation; mobile robot control; obstacle-free workspace; onboard-computation constraints; position control algorithm; roboticists; system model; Hardware; Robot kinematics; Robot sensing systems; Sociology; Statistics; Turning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on
Conference_Location :
Tokyo
ISSN :
2153-0858
Type :
conf
DOI :
10.1109/IROS.2013.6696401
Filename :
6696401
Link To Document :
بازگشت