DocumentCode :
664194
Title :
Application of game-theoretic learning to gray-box modeling of McKibben pneumatic artificial muscle systems
Author :
Kogiso, Kiminao ; Naito, Ryo ; Sugimoto, Kazuya
Author_Institution :
Grad. Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Ikoma, Japan
fYear :
2013
fDate :
3-7 Nov. 2013
Firstpage :
5795
Lastpage :
5802
Abstract :
We consider a gray-box modeling of a McKibben pneumatic artificial muscle (PAM) actuated by a proportional directional control valve. This paper presents a hybrid nonlinear model of the PAM system and then proposes a systematic parameter identification procedure that uses a game-theoretic learning algorithm to obtain the appropriate parameter values for the modeling. With a practical example, finally, we verify the proposed method by illustrating a process of searching for the parameter values together with figures of after-and-before learning. As a result, we see that the resulting parameters are better than ones obtained by our previously-proposed heuristic and trial-and-error-based algorithm.
Keywords :
PD control; electroactive polymer actuators; game theory; learning (artificial intelligence); nonlinear control systems; parameter estimation; pneumatic actuators; valves; McKibben pneumatic artificial muscle systems; PAM; after-and-before learning; game-theoretic learning; gray-box modeling; heuristic algorithm; hybrid nonlinear model; parameter values; proportional directional control valve; systematic parameter identification procedure; trial-and-error-based algorithm; Atmospheric modeling; Data models; Games; Load modeling; Mathematical model; Steady-state; Valves;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on
Conference_Location :
Tokyo
ISSN :
2153-0858
Type :
conf
DOI :
10.1109/IROS.2013.6697195
Filename :
6697195
Link To Document :
بازگشت