Title :
Consistent HMM parameter estimation using Kerridge inaccuracy rates
Author :
Molloy, Timothy L. ; Ford, Jason J.
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Queensland Univ. of Technol., Brisbane, QLD, Australia
Abstract :
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).
Keywords :
convergence; hidden Markov models; maximum likelihood estimation; recursive estimation; Kerridge inaccuracy rate concepts; consistent HMM parameter estimation; convergence behaviour; local convergence properties; mild identifiability conditions; online KIR-based estimator; online hidden Markov model parameter estimator; recursive maximum likelihood estimator; Convergence; Cost function; Entropy; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Vectors;
Conference_Titel :
Control Conference (AUCC), 2013 3rd Australian
Conference_Location :
Fremantle, WA
Print_ISBN :
978-1-4799-2497-4
DOI :
10.1109/AUCC.2013.6697250