Title : 
Consistent HMM parameter estimation using Kerridge inaccuracy rates
         
        
            Author : 
Molloy, Timothy L. ; Ford, Jason J.
         
        
            Author_Institution : 
Sch. of Electr. Eng. & Comput. Sci., Queensland Univ. of Technol., Brisbane, QLD, Australia
         
        
        
        
        
        
            Abstract : 
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).
         
        
            Keywords : 
convergence; hidden Markov models; maximum likelihood estimation; recursive estimation; Kerridge inaccuracy rate concepts; consistent HMM parameter estimation; convergence behaviour; local convergence properties; mild identifiability conditions; online KIR-based estimator; online hidden Markov model parameter estimator; recursive maximum likelihood estimator; Convergence; Cost function; Entropy; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Vectors;
         
        
        
        
            Conference_Titel : 
Control Conference (AUCC), 2013 3rd Australian
         
        
            Conference_Location : 
Fremantle, WA
         
        
            Print_ISBN : 
978-1-4799-2497-4
         
        
        
            DOI : 
10.1109/AUCC.2013.6697250