Title :
Analysis and path localization of gate current in AlGaN/GaN HEMTs using low frequency noise measurements and Optical Beam Induced Resistance Change technique
Author :
Karboyan, S. ; Tartarin, J.G. ; Carisetti, Dominique ; Lambert, B.
Author_Institution :
LAAS, Toulouse, France
Abstract :
GaN based transistors´ performance and reliability status are largely sensitive to gate conduction mechanisms and surface charges induced by spontaneous and piezoelectric effects. Understanding leakage current origin and kinetic is the key of knowledge for improving GaN technologies. Therefore, room temperature Low Frequency Noise (LFN) and Optical Beam Induced Resistance Change (OBIRCh) measurements have been investigated on the gate current of AlGaN/GaN High Electron Mobility Transistors (HEMTs). LFN measurements are performed under two configurations: the Schottky diode is measured at open drain, and the transistor is investigated in the saturated region (VDS=8V). On the other hand, the application of the OBIRCh imaging technique is performed on the Schottky diode versus the same gate voltages than for the LFN. This paper focuses on the behavior of the gate-source region of the Schottky diode and on the gate-source and gate-drain regions of the transistor. From the LFN measurements, it is found that the carriers contributing to IGS are following the same path between gate and source for both configurations (diode, transistor) under elevated reverse gate-source voltage. As from OBIRCh measurements, a spots spread transmit an increase in the current conduction area on the gate width when VGS decreases (toward high reverse biases). The results allow correlation between these two techniques.
Keywords :
III-V semiconductors; OBIC; Schottky diodes; aluminium compounds; electric resistance; gallium compounds; high electron mobility transistors; leakage currents; semiconductor device measurement; semiconductor device noise; semiconductor device reliability; wide band gap semiconductors; AlGaN-GaN; HEMT; LFN measurements; OBIRCh imaging technique; OBIRCh measurements; Schottky diode; gate conduction mechanisms; gate current; gate voltages; gate-drain regions; gate-source region; high electron mobility transistors; leakage current; low frequency noise measurements; optical beam induced resistance change technique; path localization; piezoelectric effects; reliability status; saturated region; surface charges; temperature 293 K to 298 K; transistors performance; Current measurement; Gallium nitride; HEMTs; Logic gates; MODFETs; Schottky diodes; AlGaN/GaN HEMT; LFN; OBIRCh; leakage current;
Conference_Titel :
Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International
Conference_Location :
Seattle, WA
Print_ISBN :
978-1-4673-6177-4
DOI :
10.1109/MWSYM.2013.6697490