Title :
Simultaneous Neural Control of Simple Reaching and Grasping With the Modular Prosthetic Limb Using Intracranial EEG
Author :
Fifer, Matthew S. ; Hotson, Guy ; Wester, Brock A. ; McMullen, David P. ; Wang, Yannan ; Johannes, Matthew S. ; Katyal, Kapil D. ; Helder, John B. ; Para, Matthew P. ; Vogelstein, R. Jacob ; Anderson, William S. ; Thakor, Nitish V. ; Crone, Nathan E.
Author_Institution :
Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA
Abstract :
Intracranial electroencephalographic (iEEG) signals from two human subjects were used to achieve simultaneous neural control of reaching and grasping movements with the Johns Hopkins University Applied Physics Lab (JHU/APL) Modular Prosthetic Limb (MPL), a dexterous robotic prosthetic arm. We performed functional mapping of high gamma activity while the subject made reaching and grasping movements to identify task-selective electrodes. Independent, online control of reaching and grasping was then achieved using high gamma activity from a small subset of electrodes with a model trained on short blocks of reaching and grasping with no further adaptation. Classification accuracy did not decline (p <; 0.05, one-way ANOVA) over three blocks of testing in either subject. Mean classification accuracy during independently executed overt reach and grasp movements for (Subject 1, Subject 2) were (0.85, 0.81) and (0.80, 0.96), respectively, and during simultaneous execution they were (0.83, 0.88) and (0.58, 0.88), respectively. Our models leveraged knowledge of the subject´s individual functional neuroanatomy for reaching and grasping movements, allowing rapid acquisition of control in a time-sensitive clinical setting. We demonstrate the potential feasibility of verifying functionally meaningful iEEG-based control of the MPL prior to chronic implantation, during which additional capabilities of the MPL might be exploited with further training.
Keywords :
biomedical electrodes; electroencephalography; gait analysis; knowledge acquisition; medical robotics; medical signal processing; neurophysiology; prosthetics; signal classification; statistical analysis; Johns Hopkins University applied physics lab modular prosthetic limb; chronic implantation; classification accuracy; dexterous robotic prosthetic arm; functional mapping; high gamma activity; iEEG-based control; intracranial EEG; intracranial electroencephalographic signals; leveraged knowledge; mean classification accuracy; modular prosthetic limb; one-way ANOVA; online control; rapid acquisition; simple reaching-and-grasping movements; simultaneous execution; simultaneous neural control; subject individual functional neuroanatomy; task-selective electrodes; time-sensitive clinical setting; Accuracy; Educational institutions; Electrodes; Grasping; Modulation; Prosthetic limbs; Training; Brain–machine interface (BMI); electrocorticography; functional mapping; high gamma; upper limb prosthesis;
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
DOI :
10.1109/TNSRE.2013.2286955