DocumentCode :
66475
Title :
Insights in the Physical Damage of V_{\\rm GS} = V_{\\rm DS} High-K PMOSFET Degradation in AC Switching Conditions
Author :
La Rosa, G. ; Rauch, Simon ; Guarin, Fernando ; Boffoli, S.
Author_Institution :
Semicond. R&D Center, IBM Microelectron., Hopewell Junction, NY, USA
Volume :
13
Issue :
1
fYear :
2013
fDate :
Mar-13
Firstpage :
185
Lastpage :
191
Abstract :
In this paper, the device degradation enhanced by localized drain self-heating (LDSH) effects at VGS = VDS bias condition has been measured and characterized in the pMOSFET transistors of an advanced CMOS HKMG 28-nm bulk technology in both dc (constant voltage) and ac (rectangular pulse) conditions. A comparison with the pMOSFET aging during symmetric (VDS = 0 V) negative bias temperature instability (NBTI) condition gives experimental evidence that the physical damage generated at VGS = VDS bias conditions is dominated by the quasi-permanent component of a symmetric “NBTI-like” thermally activated process with an effective temperature determined by LDSH effects dominating during switching. Similar to conductive (VGS ≈ 1/2VDS) hot carrier phenomena, a quasi-static approximation can be assumed for the VGS = VDS condition during ac switching. In this case, however, the device damage relates to the NBTI response to the effective temperature profile reached during the VGSVDS transients as well as the relation of the associated duty cycles to the values of the LDSH thermal time constants at the stress conditions. The obtained results clearly show that end-of-life projections using dc models will greatly overpredict the level of VGS = VDS degradation expected in typical digital applications. On the contrary, our study provides experimental evidence that the VGS = VDS bias condition is not expected to contribute to device aging during typical digital switching frequencies (f ≈ GHz) and brings further light on the physical mechanism responsible for its observed reduced sensitivity from dc to ac.
Keywords :
CMOS integrated circuits; MOSFET; hot carriers; negative bias temperature instability; AC switching condition; CMOS HKMG bulk technology; NBTI; conductive hot carrier phenomena; device degradation; digital switching frequency; end-of-life projection; high-k PMOSFET degradation; localized drain self-heating effect; negative bias temperature instability; pMOSFET aging; pMOSFET transistor; physical damage; quasi-static approximation; size 28 nm; CMOS integrated circuits; Degradation; MOSFET circuits; Stress; Switches; Temperature dependence; Temperature measurement; CMOS digital integrated circuits; Channel hot carrier; negative bias temperature instabilities (NBTIs); pMOSFET; reliability modeling;
fLanguage :
English
Journal_Title :
Device and Materials Reliability, IEEE Transactions on
Publisher :
ieee
ISSN :
1530-4388
Type :
jour
DOI :
10.1109/TDMR.2012.2227482
Filename :
6353190
Link To Document :
بازگشت