Title :
Compact Cascadable g m -C All-Pass True Time Delay Cell With Reduced Delay Variation Over Frequency
Author :
Garakoui, Seyed Kasra ; Klumperink, Eric A. M. ; Nauta, Bram ; van Vliet, Frank E.
Author_Institution :
CTIT Inst., Univ. of Twente, Enschede, Netherlands
Abstract :
At low-GHz frequencies, analog time-delay cells realized by LC delay lines or transmission lines are unpractical in CMOS, due to their large size. As an alternative, delays can be approximated by all-pass filters exploiting transconductors and capacitors (g m -C filters). This paper presents an easily cascadable compact g m -C all-pass filter cell for 1-2.5 GHz. Compared to previous g m -RC and g m -C filter cells, it achieves at least 5x larger frequency range for the same relative delay variation, while keeping gain variation within 1 dB. This paper derives design equations for the transfer function and several non-idealities. Circuit techniques to improve phase linearity and reduce delay variation over frequency, are also proposed. A 160 nm CMOS chip with maximum delay of 550 ps is demonstrated with monotonous delay steps of 13 ps (41 steps) and an RMS delay variation error of less than 10 ps over more than an octave in frequency (1-2.5 GHz). The delay per area is at least 50x more than for earlier chips. The all-pass cells are used to realize a four element timed-array receiver IC. Measurement results of the beam pattern demonstrate the wideband operation capability of the g m -RC time delay cell and timed-array IC-architecture.
Keywords :
CMOS integrated circuits; UHF filters; UHF integrated circuits; all-pass filters; delay filters; integrated circuit design; transfer functions; CMOS chip; LC delay line; RMS delay variation error; analog time-delay cell; beam pattern demonstration; capacitor; compact cascadable gm-C all-pass filter true time delay cell; four element timed-array receiver IC; frequency 1 GHz to 2.5 GHz; gain 1 dB; gm-C filter; gm-RC filter cell; phase linearity; reduced delay variation; size 160 nm; time 13 ps; time 550 ps; transconductors; transfer function; transmission line; wideband operation capability; Bandwidth; Capacitors; Delay effects; Delays; Gain; Transfer functions; Transistors; All-pass filter; CMOS; beam forming; beam squinting; delay compensation; equalizer; phase shifter; phased array receiver; time delay; timed-array receiver; true time delay;
Journal_Title :
Solid-State Circuits, IEEE Journal of
DOI :
10.1109/JSSC.2015.2390214