• DocumentCode
    66853
  • Title

    Tensors : A brief introduction

  • Author

    Comon, Pierre

  • Author_Institution
    GIPSA-Lab., St. Martin d´Hères, France
  • Volume
    31
  • Issue
    3
  • fYear
    2014
  • fDate
    May-14
  • Firstpage
    44
  • Lastpage
    53
  • Abstract
    Tensor decompositions are at the core of many blind source separation (BSS) algorithms, either explicitly or implicitly. In particular, the canonical polyadic (CP) tensor decomposition plays a central role in the identification of underdetermined mixtures. Despite some similarities, CP and singular value decomposition (SVD) are quite different. More generally, tensors and matrices enjoy different properties, as pointed out in this brief introduction.
  • Keywords
    blind source separation; decomposition; matrix algebra; singular value decomposition; tensors; BSS algorithm; CP; SVD; blind source separation algorithm; canonical polyadic tensor decomposition; matrices; singular value decomposition; Blind source separation; Covariance matrices; Indexes; Matrix decomposition; Signal processing algorithms; Source separation; Tensile stress;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1053-5888
  • Type

    jour

  • DOI
    10.1109/MSP.2014.2298533
  • Filename
    6784037