DocumentCode
66853
Title
Tensors : A brief introduction
Author
Comon, Pierre
Author_Institution
GIPSA-Lab., St. Martin d´Hères, France
Volume
31
Issue
3
fYear
2014
fDate
May-14
Firstpage
44
Lastpage
53
Abstract
Tensor decompositions are at the core of many blind source separation (BSS) algorithms, either explicitly or implicitly. In particular, the canonical polyadic (CP) tensor decomposition plays a central role in the identification of underdetermined mixtures. Despite some similarities, CP and singular value decomposition (SVD) are quite different. More generally, tensors and matrices enjoy different properties, as pointed out in this brief introduction.
Keywords
blind source separation; decomposition; matrix algebra; singular value decomposition; tensors; BSS algorithm; CP; SVD; blind source separation algorithm; canonical polyadic tensor decomposition; matrices; singular value decomposition; Blind source separation; Covariance matrices; Indexes; Matrix decomposition; Signal processing algorithms; Source separation; Tensile stress;
fLanguage
English
Journal_Title
Signal Processing Magazine, IEEE
Publisher
ieee
ISSN
1053-5888
Type
jour
DOI
10.1109/MSP.2014.2298533
Filename
6784037
Link To Document