Title :
Superpixel Segmentation for Polarimetric SAR Imagery Using Local Iterative Clustering
Author :
Fachao Qin ; Jiming Guo ; Fengkai Lang
Author_Institution :
Sch. of Geodesy & Geomatics, Wuhan Univ., Wuhan, China
Abstract :
The simple linear iterative clustering (SLIC) algorithm shows good performance in superpixel generation for optical imagery. However, SLIC can perform poorly when there is too much noise in the image. To solve this problem, we have improved the cluster center initialization step and the postprocessing step, and then introduce the SLIC superpixel segmentation algorithm to the polarimetric synthetic aperture radar (PolSAR) image processing field. Experiments using AirSAR and ESAR L-band PolSAR data show that the improved SLIC algorithm can overcome the effect of speckle noise in PolSAR imagery, and it shows a better performance in detail preservation than the original SLIC algorithm and the normalized cuts superpixel segmentation algorithm.
Keywords :
image processing; image segmentation; noise; optical images; radar polarimetry; synthetic aperture radar; AirSAR data; ESAR L-band PolSAR data; PolSAR image processing field; PolSAR imagery speckle noise effect; SLIC superpixel segmentation algorithm; cluster center initialization step; image noise; improved SLIC algorithm; local iterative clustering; normalized cut superpixel segmentation algorithm; optical imagery; original SLIC algorithm preservation; polarimetric SAR imagery superpixel segmentation; polarimetric synthetic aperture radar; postprocessing step; simple linear iterative clustering algorithm; superpixel generation performance; Clustering algorithms; Image edge detection; Image segmentation; Noise; Remote sensing; Speckle; Synthetic aperture radar; Polarimetric synthetic aperture radar (SAR) (PolSAR); SAR; segmentation; simple linear iterative clustering (SLIC); superpixel;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2014.2322960