• DocumentCode
    673063
  • Title

    On interval edge-colorings of complete tripartite graphs

  • Author

    Grzesik, Andrzej ; Khachatrian, Hrant

  • Author_Institution
    Jagiellonian Univ., Krakow, Poland
  • fYear
    2013
  • fDate
    23-27 Sept. 2013
  • Firstpage
    1
  • Lastpage
    3
  • Abstract
    An edge-coloring of a graph G with colors 1, ..., t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. In this paper we prove that K1, m, n is interval colorable if and only if gcd(m+1, n + 1) = 1, where gcd(m+1, n+1) is the greatest common divisor of m+1 and n + 1.
  • Keywords
    graph colouring; complete tripartite graphs; edge colors; graph vertex; greatest common divisor; interval colorable graph; interval edge-colorings; interval t-coloring; positive integer; Bipartite graph; Color; Conferences; Educational institutions; Materials; Upper bound; Edge-coloring; complete multipartite graph; complete tripartite graph; interval edge-coloring;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Science and Information Technologies (CSIT), 2013
  • Conference_Location
    Yerevan
  • Print_ISBN
    978-1-4799-2460-8
  • Type

    conf

  • DOI
    10.1109/CSITechnol.2013.6710340
  • Filename
    6710340