• DocumentCode
    673796
  • Title

    Higher-order mixed spectral element method for Maxwell eigenvalue problem

  • Author

    Na Liu ; Yifa Tang ; Xiaozhang Zhu ; Tobon, Luis ; Qinghuo Liu

  • Author_Institution
    Acad. of Math. & Syst. Sci., Beijing, China
  • fYear
    2013
  • fDate
    7-13 July 2013
  • Firstpage
    1646
  • Lastpage
    1647
  • Abstract
    Conventional edge elements in solving vector Maxwell´s equations by the finite element method will lead to the presence of spurious zero eigenvalues. Here we describes a higher order mixed spectral element method (mixed SEM) for the computation of two-dimensional TEz eigenvalue problem of Maxwell´s equations. It utilizes Gauss-Lobatto-Legendre (GLL) polynomials as the basis functions in the finite-element framework with the weak divergence condition. It is shown that this method can suppress all spurious zero and nonzero modes and has spectral accuracy with analytic eigenvalues. Numerical results are given on homogeneous and doubly connected cavities to verify its merits.
  • Keywords
    eigenvalues and eigenfunctions; finite element analysis; Gauss-Lobatto-Legendre polynomials; Maxwell eigenvalue problem; doubly connected cavities; finite element method; higher-order mixed spectral element method; mixed SEM; two-dimensional TEz eigenvalue problem; Accuracy; Cavity resonators; Eigenvalues and eigenfunctions; Finite element analysis; Polynomials; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE
  • Conference_Location
    Orlando, FL
  • ISSN
    1522-3965
  • Print_ISBN
    978-1-4673-5315-1
  • Type

    conf

  • DOI
    10.1109/APS.2013.6711482
  • Filename
    6711482