• DocumentCode
    675321
  • Title

    Cellular neural network computational scheme for efficient implementation of the FDTD method

  • Author

    Mayor, J. ; Tobon, Luis ; Nagy, Zsolt ; Tamura, Eugenio

  • Author_Institution
    Dept. de Ing. Electron. y Cienc. de la Comput., Pontificia Univ. Javeriana, Cali, Colombia
  • fYear
    2013
  • fDate
    7-13 July 2013
  • Firstpage
    79
  • Lastpage
    79
  • Abstract
    ´Summaro form only given. A Cellular Neural Network (CNN) computational scheme is a processor array structure that emulates the most valuable parallelizing capabilities of the Artificial Neural Network (ANN) (L. Chua, L. Yang, Circuits and Systems, IEEE Tran, 1988). Each cell or processor inside the array has a specific processing capabilities depending on the mapped numerical application over it. This scheme has been proved in different applications that assure a PDE regular mesh mapping (A. Kiss, Z. Nagy, Journal of Circuit Theory and App, 2008).
  • Keywords
    cellular neural nets; finite difference time-domain analysis; microprocessor chips; ANN; CNN computational scheme; FDTD method; artificial neural network; cellular neural network computational scheme; parallelizing capabilities; Arrays; Cellular neural networks; Computers; Educational institutions; Finite difference methods; Geometry; Time-domain analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Radio Science Meeting (Joint with AP-S Symposium), 2013 USNC-URSI
  • Conference_Location
    Lake Buena Vista, FL
  • Print_ISBN
    978-1-4799-1128-8
  • Type

    conf

  • DOI
    10.1109/USNC-URSI.2013.6715385
  • Filename
    6715385