DocumentCode :
677640
Title :
Estimation of unknown parameters in system dynamics models using the Method of Simulated Moments
Author :
Jalali, Hazhir Rahmandad Mohammad S. ; Ghoddusi, Hamed
Author_Institution :
Ind. & Syst. Eng., Virginia Tech, Falls Church, VA, USA
fYear :
2013
fDate :
8-11 Dec. 2013
Firstpage :
1212
Lastpage :
1222
Abstract :
In principle the Method of Simulated Moments (MSM) combines simulation-based methods (e.g. Monte Carlo methods) with non-parametric statistical estimations techniques such as General Method of Moments (GMM). The MSM is useful when there are empirical data related to the behavior of different entities. Different statistical moments (e.g. mean, variance, correlation, etc.) of empirical data can be matched against the moments of model-generated data in order to estimate some structural parameters of the model. In this paper, we introduce the MSM as a non-parametric method of estimating the parameters of dynamic models. The major value of the MSM for estimating dynamic models is in its flexibility to be used with any type of data, including cross-sectional data and time series data.
Keywords :
Monte Carlo methods; method of moments; nonparametric statistics; parameter estimation; simulation; time series; GMM; MSM; Monte Carlo method; cross-sectional data; dynamic model; general method of moment; method of simulated moment; nonparametric statistical estimation; parameter estimation; simulation-based method; statistical moments; system dynamics model; time series data; Biological system modeling; Computational modeling; Data models; Estimation; Numerical models; Time series analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference (WSC), 2013 Winter
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4799-2077-8
Type :
conf
DOI :
10.1109/WSC.2013.6721509
Filename :
6721509
Link To Document :
بازگشت