DocumentCode :
681773
Title :
Parametrically adaptive wavenumber processing for mode tracking in a shallow ocean experiment
Author :
Candy, J.V.
Author_Institution :
Univ. of California Santa Barbara, Santa Barbara, CA, USA
fYear :
2013
fDate :
23-27 Sept. 2013
Firstpage :
1
Lastpage :
5
Abstract :
The shallow ocean is a dynamic environment requiring an adaptive processor. Parametrically adaptive processing implies embedding a parametric process model enabling a joint sequential processor capable of tracking oceanic variations. Here we address the problem of estimating or tracking modal functions in the ocean while jointly adjusting (adaptively) the inherent normal-mode propagation model parameters (wavenumbers) based on the data available from the Hudson Canyon experiment.
Keywords :
adaptive signal processing; geophysical signal processing; oceanographic techniques; Hudson Canyon experiment; dynamic environment; modal functions; mode tracking; parametrically adaptive wavenumber processing; shallow ocean experiment; Adaptation models; Arrays; Bayes methods; Mathematical model; Noise; Oceans; Sea measurements; adaptive model-based processor; particle filter; sequential Bayesian processor; sequential Monte Carlo; unscented Kalman filter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Oceans - San Diego, 2013
Conference_Location :
San Diego, CA
Type :
conf
Filename :
6741037
Link To Document :
بازگشت