DocumentCode :
68376
Title :
Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning
Author :
Xinlian Liang ; Yunsheng Wang ; Jaakkola, Anttoni ; Kukko, Antero ; Kaartinen, Harri ; Hyyppa, Juha ; Honkavaara, Eija ; Jingbin Liu
Author_Institution :
Dept. of Remote Sensing & Photogrammetry, Finnish Geospatial Res. Inst. (formerly Finnish Geodetic Inst.), Masala, Finland
Volume :
53
Issue :
9
fYear :
2015
fDate :
Sept. 2015
Firstpage :
5117
Lastpage :
5132
Abstract :
Stereo images have long been the main practical data source for the high-accuracy retrieval of 3-D information over large areas. However, stereoscopy has been surpassed by laser scanning (LS) techniques in recent years, particularly in forested areas, because the reflection of laser points from object surfaces directly provides 3-D geometric features and because the laser beam has good penetration capacity through forest canopies. In the last few years, image-based point clouds have become a more widely available data source because of advances in matching algorithms and computer hardware. This paper explores the possibility of using consumer cameras for forest field data collection and presents an application of terrestrial image-based point clouds derived from a handheld camera to forest plot inventories. In the experiment, the sample forest plot was photographed in a stop-and-go mode using different routes and camera settings. Five data sets were generated from photographs taken in the field, representing different photographic conditions. The stem detection accuracy ranged between 60% and 84%, and the root-mean-square errors of the estimated diameters at breast height were between 2.98 and 6.79 cm. The performance of image-based point clouds in forest data collection was compared with that of point clouds derived from two LS techniques, i.e., terrestrial LS (the professional level) and personal LS (an emerging technology). The study indicates that the construction of image-based point clouds of forest field data requires only low-cost, low-weight, and easy-to-use equipment and automated data processing. Photographic measurement is easy and relatively fast. The accuracy of tree attribute estimates is close to an acceptable level for forest field inventory but is lower than that achieved with the tested LS techniques.
Keywords :
cameras; feature extraction; forestry; geophysical image processing; geophysical techniques; optical scanners; stereo image processing; vegetation; 3D geometric feature; automated data processing; breast height; camera setting; consumer camera; easy-to-use equipment; forest canopy; forest data collection; forest field data collection; forest field inventory; forest plot inventory; forested area; handheld camera; high-accuracy 3D information retrieval; laser beam penetration capacity; laser point reflection; laser scanning technique; object surface; personal laser scanning; photographic measurement; root-mean-square error; stem detection accuracy; stereo images; stereoscopy; terrestrial image-based point clouds; terrestrial laser scanning; Accuracy; Cameras; Data collection; Laser beams; Measurement by laser beam; Three-dimensional displays; Vegetation; Forest inventory; Light Detection And Ranging (LiDAR); handheld camera; image-based point cloud; laser scanning (LS); point cloud; structure from motion; terrestrial;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2015.2417316
Filename :
7109840
Link To Document :
بازگشت