DocumentCode :
692854
Title :
11 PFLOP/s simulations of cloud cavitation collapse
Author :
Rossinelli, Diego ; Hejazialhosseini, Babak ; Hadjidoukas, Panagiotis ; Bekas, Costas ; Curioni, Alessandro ; Bertsch, Adam ; Futral, Scott ; Schmidt, Steffen J. ; Adams, Nikolaus A. ; Koumoutsakos, Petros
Author_Institution :
Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland
fYear :
2013
fDate :
17-22 Nov. 2013
Firstpage :
1
Lastpage :
13
Abstract :
We present unprecedented, high throughput simulations of cloud cavitation collapse on 1.6 million cores of Sequoia reaching 55% of its nominal peak performance, corresponding to 11 PFLOP/s. The destructive power of cavitation reduces the lifetime of energy critical systems such as internal combustion engines and hydraulic turbines, yet it has been harnessed for water purification and kidney lithotripsy. The present two-phase flow simulations enable the quantitative prediction of cavitation using 13 trillion grid points to resolve the collapse of 15´000 bubbles. We advance by one order of magnitude the current state-of-the-art in terms of time to solution, and by two orders the geometrical complexity of the flow. The software successfully addresses the challenges that hinder the effective solution of complex flows on contemporary supercomputers, such as limited memory bandwidth, I/O bandwidth and storage capacity. The present work redefines the frontier of high performance computing for fluid dynamics simulations.
Keywords :
bubbles; cavitation; cloud computing; computational fluid dynamics; flow simulation; mainframes; parallel machines; parallel processing; two-phase flow; I/O bandwidth; PFLOP/s simulations; cloud cavitation collapse; contemporary supercomputers; destructive power; energy critical systems; fluid dynamics simulations; geometrical complexity; high performance computing; hydraulic turbines; internal combustion engines; kidney lithotripsy; storage capacity; two-phase flow simulations; water purification; Bandwidth; Computational modeling; Equations; Kernel; Mathematical model; Supercomputers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computing, Networking, Storage and Analysis (SC), 2013 International Conference for
Conference_Location :
Denver, CO
Print_ISBN :
978-1-4503-2378-9
Type :
conf
DOI :
10.1145/2503210.2504565
Filename :
6877436
Link To Document :
بازگشت