DocumentCode
693527
Title
Using wearable inertial sensors for posture and position tracking in unconstrained environments through learned translation manifolds
Author
Valtazanos, Aris ; Arvind, D.K. ; Ramamoorthy, Subramanian
Author_Institution
Sch. of Inf., Univ. of Edinburgh, Edinburgh, UK
fYear
2013
fDate
8-11 April 2013
Firstpage
241
Lastpage
252
Abstract
Despite recent advances in 3-D motion capture, the problem of simultaneously tracking human posture and position in an unconstrained environment remains open. Optical systems provide both types of information, but are confined to a restricted area of capture. Inertial sensing alleviates this restriction, but at the expense of capturing only relative (postural) and not absolute (positional) information. In this paper, we propose an algorithm combining the relative merits of these systems to track both position and posture in challenging environments. Offline, we combine an optical (Kinect) and an inertial sensing (Orient-4) platform to learn a mapping from posture variations to translations, which we encode as a translation manifold. Online, the optical source is removed, and the learned mapping is used to infer positions using the postures computed by the inertial sensors. We first evaluate our approach in simulation, on motion sequences with ground-truth positions for error estimation. Then, the method is deployed on physical sensing platforms to track human subjects. The proposed algorithm is shown to yield a lower average cumulative error than comparable position tracking methods, such as double integration of accelerometer data, on both simulated and real sensory data, and in a variety of motions and capture settings.
Keywords
accelerometers; biomechanics; biomedical measurement; body sensor networks; motion measurement; optical sensors; accelerometer data; error estimation; ground-truth positions; learned translation manifolds; motion sequences; optical sensing; position tracking; posture tracking; unconstrained environments; wearable inertial sensors; Adaptive optics; Manifolds; Nickel; Optical sensors; Tracking; Vectors; Wearable inertial sensors; manifold learning; optical motion capture; translation models;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Processing in Sensor Networks (IPSN), 2013 ACM/IEEE International Conference on
Conference_Location
Philadelphia, PA
Type
conf
DOI
10.1109/IPSN.2013.6917566
Filename
6917566
Link To Document