DocumentCode :
695906
Title :
Optimizing the convergence of data-based controller tuning
Author :
Eckhard, Diego ; Sanfelice Bazanella, Alexandre
Author_Institution :
Dept. of Electr. Eng., Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil
fYear :
2009
fDate :
23-26 Aug. 2009
Firstpage :
910
Lastpage :
915
Abstract :
Data-based control design methods most often consist of iterative adjustment of the controller´s parameters towards the parameter values which minimize an H2 performance criterion. Typically, batches of input-output data collected from the system are used to feed directly a gradient descent optimization - no process model is used. The convergence to the global minimum of the performance criterion depends on the initial controller parameters and on the step size of each iteration. This paper discusses these issues and provides a method for choosing the step size to ensure convergence to the global minimum utilizing the lowest possible number of iterations.
Keywords :
control system synthesis; convergence of numerical methods; gradient methods; control design methods; convergence; data-based controller tuning; global minimum; gradient descent optimization; initial controller parameters; input-output data; iterative adjustment; parameter values; performance criterion; step size; Computational modeling; Control design; Convergence; Cost function; Mathematical model; Tuning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2009 European
Conference_Location :
Budapest
Print_ISBN :
978-3-9524173-9-3
Type :
conf
Filename :
7074520
Link To Document :
بازگشت