DocumentCode :
697063
Title :
Ellipsoidal approximation of the stability domain of a polynomial
Author :
Henrion, Didier ; Peaucelle, Dimitri ; Arzelier, Denis ; Sebek, Michael
Author_Institution :
Centre Nat. de la Rech. Sci., Lab. d´Anal. et d´Archit. des Syst., Toulouse, France
fYear :
2001
fDate :
4-7 Sept. 2001
Firstpage :
384
Lastpage :
389
Abstract :
The stability region in the space of coefficients of a polynomial is a non-convex region in general. In this paper, we propose a new convex ellipsoidal inner approximation of this region derived via optimization over linear matrix inequalities. As a byproduct, we obtain new simple sufficient conditions for stability that may prove useful in robust control design.
Keywords :
linear matrix inequalities; optimisation; polynomial approximation; robust control; convex ellipsoidal inner approximation; linear matrix inequalities; nonconvex region; optimization; polynomial stability domain; robust control design; sufficient conditions; Aerospace electronics; Approximation methods; Ellipsoids; Linear matrix inequalities; Polynomials; Power system stability; Stability analysis; Linear Matrix Inequalities; Linear Systems; Polynomial; Stability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2001 European
Conference_Location :
Porto
Print_ISBN :
978-3-9524173-6-2
Type :
conf
Filename :
7075937
Link To Document :
بازگشت