DocumentCode
697315
Title
Variance properties of a two-step ARX estimation procedure
Author
Tjarnstrom, Fredrik ; Ljung, Lennart
Author_Institution
Div. of Autom. Control, Linkpings Univ., Linkping, Sweden
fYear
2001
fDate
4-7 Sept. 2001
Firstpage
1840
Lastpage
1845
Abstract
In this contribution we discuss some variance properties of a two-step ARX estimation scheme. An expression for the co-variance of the final low order model is calculated and it is discussed how one should minimize this covariance. The implication of the results is that identification of the dynamics of a system could very easily be performed with standard linear least squares (two times), even if the measurement noise is heavily colored. We also show a numerical example, where this two-step estimation scheme gives a variance which is close (but not equal) to the the Cramèr-Rao lower bound. Moreover, we show that the point estimate of the covariance is close to the one obtained through Monte Carlo simulations.
Keywords
Monte Carlo methods; covariance analysis; estimation theory; least squares approximations; Cramèr-Rao lower bound; Monte Carlo simulations; covariance point estimation; final low order model; linear least squares; measurement noise; two-step ARX estimation procedure; Analytical models; Computational modeling; Data models; Estimation; Europe; Noise; Reduced order systems; Estimation; Identification Methods;
fLanguage
English
Publisher
ieee
Conference_Titel
Control Conference (ECC), 2001 European
Conference_Location
Porto
Print_ISBN
978-3-9524173-6-2
Type
conf
Filename
7076189
Link To Document