• DocumentCode
    697862
  • Title

    Extracting biometric binary strings with minimal area under the FRR curve for the hamming distance classifier

  • Author

    Chen, Chun ; Veldhuis, Raymond

  • Author_Institution
    Electr. Eng., Univ. of Twente, Enschede, Netherlands
  • fYear
    2009
  • fDate
    24-28 Aug. 2009
  • Firstpage
    50
  • Lastpage
    54
  • Abstract
    Quantizing real-valued templates into binary strings is a fundamental step in biometric compression and template protection. In this paper, we introduce the area under the FRR curve optimize bit allocation (AUF-OBA) principle. Given the bit error probability, AUF-OBA assigns the numbers of quantization bits to every feature, in such way that the analytical area under the false rejection rate (FRR) curve for a Hamming distance classifier (HDC) is minimized. Experiments on the FRGC face database yield good performances.
  • Keywords
    Hamming codes; biometrics (access control); curve fitting; data compression; error statistics; image classification; image coding; quantisation (signal); AUF-OBA principle; FRGC face database; HDC; Hamming distance classifier; area under the FRR curve optimize bit allocation principle; biometric binary strings; biometric compression; bit error probability; false rejection rate curve; quantization bits; real-valued templates; template protection; Abstracts;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2009 17th European
  • Conference_Location
    Glasgow
  • Print_ISBN
    978-161-7388-76-7
  • Type

    conf

  • Filename
    7077434