• DocumentCode
    697877
  • Title

    Unsupervised multiscale change detection in multitemporal synthetic aperture radar images

  • Author

    Celik, Turgay

  • Author_Institution
    Nat. Univ. of Singapore, Singapore, Singapore
  • fYear
    2009
  • fDate
    24-28 Aug. 2009
  • Firstpage
    1547
  • Lastpage
    1551
  • Abstract
    An unsupervised change detection technique for synthetic aperture radar (SAR) images is proposed by conducting probabilistic Bayesian inferencing with expectation maximization-based parameter estimation to perform unsupervised thresholding over the data collected from the dual-tree complex wavelet transform (DT-CWT) subbands generated at the various scales. The proposed approach exploits a DT-CWT-based multiscale decomposition of the log-ratio image aimed at achieving different scales of representation of the change signal. Experimental results obtained on multitemporal SAR images acquired by the ERS-1, and JERS satellites confirm the effectiveness of the proposed approach.
  • Keywords
    Bayes methods; expectation-maximisation algorithm; image representation; image segmentation; parameter estimation; radar imaging; spaceborne radar; synthetic aperture radar; trees (mathematics); wavelet transforms; DT-CWT; ERS-1 satellite; JERS satellite; SAR image; change signal representation; dual-tree complex wavelet transform; expectation maximization-based parameter estimation; log-ratio image multiscale decomposition; multitemporal synthetic aperture radar image; probabilistic Bayesian inferencing; unsupervised multiscale change detection; unsupervised thresholding; Bayes methods; Change detection algorithms; Discrete wavelet transforms; Remote sensing; Synthetic aperture radar;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2009 17th European
  • Conference_Location
    Glasgow
  • Print_ISBN
    978-161-7388-76-7
  • Type

    conf

  • Filename
    7077449