Title :
Sparse Stochastic Processes and Discretization of Linear Inverse Problems
Author :
Bostan, Emrah ; Kamilov, Ulugbek S. ; Nilchian, M. ; Unser, Michael
Author_Institution :
Biomed. Imaging Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
Abstract :
We present a novel statistically-based discretization paradigm and derive a class of maximum a posteriori (MAP) estimators for solving ill-conditioned linear inverse problems. We are guided by the theory of sparse stochastic processes, which specifies continuous-domain signals as solutions of linear stochastic differential equations. Accordingly, we show that the class of admissible priors for the discretized version of the signal is confined to the family of infinitely divisible distributions. Our estimators not only cover the well-studied methods of Tikhonov and l1-type regularizations as particular cases, but also open the door to a broader class of sparsity-promoting regularization schemes that are typically nonconvex. We provide an algorithm that handles the corresponding nonconvex problems and illustrate the use of our formalism by applying it to deconvolution, magnetic resonance imaging, and X-ray tomographic reconstruction problems. Finally, we compare the performance of estimators associated with models of increasing sparsity.
Keywords :
X-ray microscopy; deconvolution; differential equations; magnetic resonance imaging; maximum likelihood estimation; stochastic processes; MAP estimators; Tikhonovm methods; X-ray tomographic reconstruction problems; continuous-domain signals; deconvolution; ill-conditioned linear inverse problems; infinitely divisible distributions; l1-type regularizations; linear inverse problems discretization; linear stochastic differential equations; magnetic resonance imaging; maximum a posteriori; nonconvex problems; sparse stochastic processes; sparsity-promoting regularization schemes; statistically-based discretization paradigm; Innovation models; maximum a posteriori (MAP) estimation; non-Gaussian statistics; nonconvex optimization; sparse stochastic processes; sparsity-promoting regularization; Algorithms; Bayes Theorem; Humans; Image Processing, Computer-Assisted; Linear Models; Magnetic Resonance Imaging; Models, Biological; Neurons; Phantoms, Imaging; Signal Processing, Computer-Assisted; Stem Cells; Stochastic Processes; Tomography, X-Ray Computed;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2013.2255305