• DocumentCode
    70257
  • Title

    Con-Resistant Trust for Improved Reliability in a Smart-Grid Special Protection System

  • Author

    Shipman, Crystal M. ; Hopkinson, Kenneth M. ; Lopez, J.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA
  • Volume
    30
  • Issue
    1
  • fYear
    2015
  • fDate
    Feb. 2015
  • Firstpage
    455
  • Lastpage
    462
  • Abstract
    This paper applies a con-resistant trust mechanism to improve the performance of a communications-based special protection system to enhance its effectiveness and resiliency. Smart grids incorporate modern information technologies to increase reliability and efficiency through better situational awareness. However, with the benefits of this new technology come the added risks associated with threats and vulnerabilities to the technology and to the critical infrastructure it supports. The research in this paper uses con-resistant trust to quickly identify malicious or malfunctioning (untrustworthy) protection system nodes to mitigate instabilities. The con-resistant trust mechanism allows protection system nodes to make trust assessments based on the node´s cooperative and defective behaviors. These behaviors are observed via frequency readings which are prediodically reported. The trust architecture is tested in experiments by comparing a simulated special protection system with a con-resistant trust mechanism to one without the mechanism via an analysis of the variance statistical model. Simulation results show promise for the proposed con-resistant trust mechanism.
  • Keywords
    power system protection; power system reliability; smart power grids; statistical analysis; con-resistant trust mechanism; critical infrastructure; frequency readings; improved reliability; malfunctioning protection system; malicious protection system; modern information technology; situational awareness; smart grid; special protection system; trust assessments; untrustworthy protection system; variance statistical model; Generators; Government; Load modeling; Peer-to-peer computing; Resistance; Smart grids; Time-frequency analysis; Con-resistant trust; critical infrastructure; reputation-based trust; smart grid; special protection systems;
  • fLanguage
    English
  • Journal_Title
    Power Delivery, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8977
  • Type

    jour

  • DOI
    10.1109/TPWRD.2014.2358074
  • Filename
    6898851