DocumentCode :
703113
Title :
Nonlinear constrained optimization using Lagrangian approach for blind source separation
Author :
Stoll, Benoit ; Moreau, Eric
Author_Institution :
MS-GESSY, Univ. de Toulon et du Var, La Valette-du-Var, France
fYear :
1998
fDate :
8-11 Sept. 1998
Firstpage :
1
Lastpage :
4
Abstract :
The paper deals with the blind source separation problem. We introduce two new adaptive algorithms based on the minimization of constrained contrast functions using a Lagrangian approach. The algorithms "only" require one stage for separation and the approach is general in the sense that it can be used with any contrasts working with normalized vectors. The computer simulation shows good performances in comparison to the EASI algorithm.
Keywords :
adaptive signal processing; blind source separation; minimisation; nonlinear programming; Lagrangian approach; adaptive algorithm; blind source separation problem; computer simulation; constrained contrast function minimization; nonlinear constrained optimization; normalized vectors; Approximation algorithms; Computer simulation; Indexes; Optimization; Signal processing algorithms; Source separation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference (EUSIPCO 1998), 9th European
Conference_Location :
Rhodes
Print_ISBN :
978-960-7620-06-4
Type :
conf
Filename :
7089583
Link To Document :
بازگشت