Title :
Multidimensional optimisation of harmonic signals
Author :
Walmsley, Paul J. ; Godsill, Simon J. ; Rayner, Peter J. W.
Author_Institution :
Dept. of Eng., Univ. of Cambridge, Cambridge, UK
Abstract :
Harmonic models are a common class of sinusoidal models which are of great interest in speech and musical analysis. In this paper we present a method for estimating the parameters of an unknown number of musical notes, each with an unknown number of harmonics. We pose the estimation task in a Bayesian framework which allows for the specification of (possibly subjective) a priori knowledge of the model parameters. We use indicator variables to represent implicitly the model order and employ a Metropolis-Hastings algorithm to produce approximate maximum a posteriori parameter estimates. A novel choice of transition kernels is presented to explore the parameter space, exploiting the structure of the posterior distribution.
Keywords :
Bayes methods; multidimensional signal processing; music; optimisation; parameter estimation; speech processing; Bayesian framework; Metropolis-Hastings algorithm; a posteriori parameter estimation; a priori knowledge; harmonic signals; multidimensional optimisation; musical analysis; sinusoidal models; speech analysis; transition kernels; Bayes methods; Frequency estimation; Harmonic analysis; Joints; Kernel; Markov processes; Proposals;
Conference_Titel :
Signal Processing Conference (EUSIPCO 1998), 9th European
Conference_Location :
Rhodes
Print_ISBN :
978-960-7620-06-4