• DocumentCode
    703473
  • Title

    Modelling sea clutter using conditional heteroscedastic models

  • Author

    Noga, Jacek L. ; Fitzgerald, William J.

  • Author_Institution
    Eng. Dept., Cambridge Univ., Cambridge, UK
  • fYear
    1998
  • fDate
    8-11 Sept. 1998
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    In this paper a class of conditional heteroscedastic models is introduced in the context of sea clutter modelling. In particular, an Auto-regressive (AR) process driven by conditional heteroscedastic (CH) errors (AR-CH model) is proposed as a model for the time evolution dynamics of the modulating component of sea clutter. The CH process parameters of the AR-CH model determine the weight of the tails of the marginal distribution, while the AR component largely determines the correlation structure. Different functional forms of conditional variance models are investigated using real sea clutter data.
  • Keywords
    autoregressive processes; clutter; auto-regressive process; conditional heteroscedastic models; conditional variance models; marginal distribution; sea clutter modelling; time evolution dynamics; Biological system modeling; Clutter; Context modeling; Correlation; Data models; Mathematical model; Noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference (EUSIPCO 1998), 9th European
  • Conference_Location
    Rhodes
  • Print_ISBN
    978-960-7620-06-4
  • Type

    conf

  • Filename
    7089944