DocumentCode :
703909
Title :
Coherence based message prediction for optically interconnected chip multiprocessors
Author :
Van Laer, Anouk ; Ellawala, Chamath ; Madarbux, Muhammad Ridwan ; Watts, Philip M. ; Jones, Timothy M.
Author_Institution :
Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK
fYear :
2015
fDate :
9-13 March 2015
Firstpage :
613
Lastpage :
616
Abstract :
Photonic networks on chip have been proposed to reduce latency and power consumption of on-chip communication in chip multiprocessors. However, in switched photonic networks, the path setup latency can create a high overhead, particularly for the short messages generated by shared memory chip multiprocessors (CMP). This has led to proposals for networks which avoid switching using all-to-all or single writer multiple reader (SWMR) networks which dramatically increase optical component counts and hence power consumption. In this work we propose a predictor which uses information from the coherence protocol and previously transmitted messages to predict future messages and hence hide the path setup latency by speculatively setup photonic paths. We show that a directly mapped predictor can achieve prediction hit rates of up to 85% for PARSEC benchmarks in a 16-core x86 system using the MESI coherence protocol whereas a more resource efficient set associative predictor can still achieve prediction rates up to 75%.
Keywords :
integrated optics; microprocessor chips; multiprocessing systems; multiprocessor interconnection networks; network-on-chip; optical interconnections; CMP; MESI coherence protocol; PARSEC benchmarks; coherence based message prediction; optically interconnected chip multiprocessors; photonic networks on chip; photonic paths; prediction hit rates; set associative predictor; switched optical NoC; Benchmark testing; Coherence; Optical switches; Photonics; Protocols; System-on-chip; Table lookup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015
Conference_Location :
Grenoble
Print_ISBN :
978-3-9815-3704-8
Type :
conf
Filename :
7092461
Link To Document :
بازگشت