DocumentCode
705276
Title
Bayesian interpolation in a dynamic sinusoidal model with application to packet-loss concealment
Author
Nielsen, Jesper Kjor ; Christensen, Mads Grcesboll ; Cemgil, Ali Taylan ; Godsill, Simon J. ; Jensen, Soren Holdt
Author_Institution
Dept. of Electron. Syst., Aalborg Univ., Aalborg, Denmark
fYear
2010
fDate
23-27 Aug. 2010
Firstpage
239
Lastpage
243
Abstract
In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment of lost audio and speech packets.
Keywords
Bayes methods; Markov processes; Monte Carlo methods; interpolation; signal reconstruction; speech processing; Bayesian inference scheme; Bayesian interpolation; Gibbs sampler; Markov chain Monte Carlo method; dynamic sinusoidal model; hidden states; lost audio; missing observations; model parameters; packet-loss concealment; parameter estimation; speech packets; time-varying sinusoids; Bayes methods; Computational modeling; Hidden Markov models; Interpolation; Mathematical model; Noise; Speech;
fLanguage
English
Publisher
ieee
Conference_Titel
Signal Processing Conference, 2010 18th European
Conference_Location
Aalborg
ISSN
2219-5491
Type
conf
Filename
7096549
Link To Document