• DocumentCode
    706254
  • Title

    Total variation blind deconvolution using a variational approach to parameter, image, and blur estimation

  • Author

    Derin Babacan, S. ; Molina, Rafael ; Katsaggelos, Aggelos K.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA
  • fYear
    2007
  • fDate
    3-7 Sept. 2007
  • Firstpage
    2164
  • Lastpage
    2168
  • Abstract
    In this paper we propose novel algorithms for total variation (TV) based blind deconvolution and parameter estimation utilizing a variational framework. Within a hierarchical Bayesian formulation, the reconstructed image, the blur and the unknown hyperparameters for the image prior, the blur prior and the image degradation noise are simultaneously estimated. We develop two algorithms resulting from this formulation which provide approximations to the posterior distributions of the latent variables. Different values can be drawn from these distributions as estimates to the latent variables and the uncertainty of these estimates can be measured. Experimental results are provided to demonstrate the performance of the algorithms.
  • Keywords
    Bayes methods; deconvolution; image reconstruction; parameter estimation; variational techniques; Bayesian formulation; image degradation noise; image estimation; image reconstruction; parameter estimation; posterior distribution; total variation blind deconvolution; variational approach; Approximation algorithms; Approximation methods; Bayes methods; Deconvolution; Signal processing; Signal processing algorithms; TV;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2007 15th European
  • Conference_Location
    Poznan
  • Print_ISBN
    978-839-2134-04-6
  • Type

    conf

  • Filename
    7099191