Title : 
Improving on-line neural networks backpropagation convergence speed with mixed pattern-batch learning
         
        
            Author : 
Pollini, L. ; Innocenti, M.
         
        
            Author_Institution : 
Dipt. di Sist. Elettr. e Autom., Univ. di Pisa, Pisa, Italy
         
        
        
            fDate : 
Aug. 31 1999-Sept. 3 1999
         
        
        
        
            Abstract : 
The present paper describes an algorithmic technique to speed up weight convergence in neural networks on-line training. Standard pattern backpropagation is modified to train the neural network over a time window of samples and not one sample only, so that a faster weight convergence may be achieved. The use of such training technique is explained in an adaptive control task and problems related to validation of real functional approximation are investigated.
         
        
            Keywords : 
backpropagation; function approximation; neurocontrollers; adaptive control task; backpropagation convergence speed; functional approximation; mixed pattern-batch learning; online neural networks; pattern backpropagation; weight convergence; Artificial neural networks; Backpropagation; Convergence; Function approximation; Training; Backpropagation; Convergence; Mixed Pattern-Batch Learning; Neural Control;
         
        
        
        
            Conference_Titel : 
Control Conference (ECC), 1999 European
         
        
            Conference_Location : 
Karlsruhe
         
        
            Print_ISBN : 
978-3-9524173-5-5