DocumentCode
706606
Title
Estimation of parameters from quantized noisy observations
Author
Finesso, L. ; Gerencser, L. ; Kmecs, I.
Author_Institution
Inst. of Syst. Sci. & Biomed. Eng., LADSEB, Padua, Italy
fYear
1999
fDate
Aug. 31 1999-Sept. 3 1999
Firstpage
1648
Lastpage
1653
Abstract
The purpose of this paper is to formulate and study the problem of system identification with Gaussian noise and quantized observations. The prime examples that we study are Gaussian AR(1)-systems and the simplest Gaussian linear regression. The main results of the paper are the development of a randomization technique for the effective solution of the likelihood equation and computational experiments to demonstrate the paradoxical role of noise.
Keywords
Gaussian noise; identification; parameter estimation; regression analysis; Gaussian AR(1)-systems; Gaussian linear regression; Gaussian noise; likelihood equation; parameter estimation; quantized noisy observations; randomization technique; system identification; Approximation methods; Linear regression; Mathematical model; Maximum likelihood estimation; Noise; Noise measurement; Hidden Markov Models; Linear regression models; Metropolis method; maximum likelihood estimation; stochastic approximation;
fLanguage
English
Publisher
ieee
Conference_Titel
Control Conference (ECC), 1999 European
Conference_Location
Karlsruhe
Print_ISBN
978-3-9524173-5-5
Type
conf
Filename
7099550
Link To Document