• DocumentCode
    706606
  • Title

    Estimation of parameters from quantized noisy observations

  • Author

    Finesso, L. ; Gerencser, L. ; Kmecs, I.

  • Author_Institution
    Inst. of Syst. Sci. & Biomed. Eng., LADSEB, Padua, Italy
  • fYear
    1999
  • fDate
    Aug. 31 1999-Sept. 3 1999
  • Firstpage
    1648
  • Lastpage
    1653
  • Abstract
    The purpose of this paper is to formulate and study the problem of system identification with Gaussian noise and quantized observations. The prime examples that we study are Gaussian AR(1)-systems and the simplest Gaussian linear regression. The main results of the paper are the development of a randomization technique for the effective solution of the likelihood equation and computational experiments to demonstrate the paradoxical role of noise.
  • Keywords
    Gaussian noise; identification; parameter estimation; regression analysis; Gaussian AR(1)-systems; Gaussian linear regression; Gaussian noise; likelihood equation; parameter estimation; quantized noisy observations; randomization technique; system identification; Approximation methods; Linear regression; Mathematical model; Maximum likelihood estimation; Noise; Noise measurement; Hidden Markov Models; Linear regression models; Metropolis method; maximum likelihood estimation; stochastic approximation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 1999 European
  • Conference_Location
    Karlsruhe
  • Print_ISBN
    978-3-9524173-5-5
  • Type

    conf

  • Filename
    7099550