DocumentCode :
707940
Title :
Minimal realization of dynamically balanced lumped mass WA gyroscope: dual foucault pendulum
Author :
Senkal, Doruk ; Efimovskaya, Alexandra ; Shkel, Andrei M.
Author_Institution :
Microsyst. Lab., Univ. of California, Irvine, Irvine, CA, USA
fYear :
2015
fDate :
23-26 March 2015
Firstpage :
1
Lastpage :
2
Abstract :
We report a new type of MEMS rate integrating gyroscope. The Dual Foucault Pendulum (DFP) gyroscope consists of two dynamically equivalent, mechanically coupled proof masses, oscillating in anti-phase motion, creating a dynamically balanced resonator with x-y symmetry in frequency and damping. Phase synchronization is established by mechanical coupling of the two proof masses, whereas quadrature suppression is achieved by four differential shuttle pairs placed in-between. Dual axis tuning fork behavior provides vibration immunity and anchor loss mitigation, resulting in a Qfactor over 100,000 on both modes at a center frequency of 2.7 kHz. Whole angle mechanization is demonstrated by FPGAbased closed loop control of the gyroscope, showing a scale factor variation of 22 ppm RMS over 2 hours of measurement. We believe Dual Foucault Pendulum is the minimal realization of a dynamically balanced lumped mass whole angle (WA) gyroscope.
Keywords :
angular measurement; closed loop systems; field programmable gate arrays; gyroscopes; mass measurement; microsensors; pendulums; synchronisation; vibration measurement; vibrations; DFP gyroscope; FPGA-based closed loop control; MEMS rate integrating gyroscope; anchor loss mitigation; antiphase motion; differential shuttle pair; dual axis tuning fork; dual foucault pendulum gyroscope; dynamically balanced lumped mass WA gyroscope; dynamically balanced resonator; frequency 2.7 kHz; mechanical coupled proof mass; phase synchronization; quadrature suppression; vibration immunity; whole angle gyroscope; whole angle mechanization; x-y symmetry; Couplings; Damping; Gain control; Gyroscopes; Micromechanical devices; Phase locked loops; Vibrations; Rate integrating MEMS gyroscope; closed loop control; tuning fork behaviour; whole angle mechanization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Inertial Sensors and Systems (ISISS), 2015 IEEE International Symposium on
Conference_Location :
Hapuna Beach, HI
Type :
conf
DOI :
10.1109/ISISS.2015.7102394
Filename :
7102394
Link To Document :
بازگشت