DocumentCode :
710141
Title :
In-memory BLU acceleration in IBM´s DB2 and dashDB: Optimized for modern workloads and hardware architectures
Author :
Barber, Ronald ; Lohman, Guy ; Raman, Vijayshankar ; Sidle, Richard ; Lightstone, Sam ; Schiefer, Berni
Author_Institution :
IBM Res. - Almaden, San Jose, CA, USA
fYear :
2015
fDate :
13-17 April 2015
Firstpage :
1246
Lastpage :
1252
Abstract :
Although the DRAM for main memories of systems continues to grow exponentially according to Moore´s Law and to become less expensive, we argue that memory hierarchies will always exist for many reasons, both economic and practical, and in particular due to concurrent users competing for working memory to perform joins and grouping. We present the in-memory BLU Acceleration used in IBM´s DB2 for Linux, UNIX, and Windows, and now also the dashDB cloud offering, which was designed and implemented from the ground up to exploit main memory but is not limited to what fits in memory and does not require manual management of what to retain in memory, as its competitors do. In fact, BLU Acceleration views memory as too slow, and is carefully engineered to work in higher levels of the system cache by keeping the data encoded and packed densely into bit-aligned vectors that can exploit SIMD instructions in processing queries. To achieve scalable multi-core parallelism, BLU assigns to each thread independent data structures, or partitions thereof, designed to have low synchronization costs, and doles out batches of values to threads. On customer workloads, BLU has improved performance on complex analytics queries by 10 to 50 times, compared to the legacy row-organized run-time, while also significantly simplifying database administration, shortening time to value, and improving data compression. UPDATE and DELETE performance was improved by up to 112 times with the new Cancun release of DB2 with BLU Acceleration, which also added Shadow Tables for high performance on mixed OLTP and BI analytics workloads, and extended DB2´s High Availability Disaster Recovery (HADR) and SQL compatibility features to BLU´s column-organized tables.
Keywords :
DRAM chips; Linux; SQL; data compression; data structures; database management systems; multiprocessing systems; parallel architectures; query processing; storage management; synchronisation; BI analytic workload; BLU column-organized table; Cancun; DRAM; HADR; IBM DB2; Linux; Moore Law; OLTP; SIMD instruction; SQL compatibility feature; Shadow Tables; UNIX; Windows; bit-aligned vector; complex analytic query; dashDB cloud offering; data compression; data structure; database administration; hardware architecture; high availability disaster recovery; in-memory BLU acceleration; legacy row-organized run-time; memory hierarchies; multicore parallelism; query processing; synchronization cost; Acceleration; Hardware; Indexes; Memory management; Random access memory; BLU; Business Intelligence; DB2; SIMD; analytics; cache-conscious; compression; dashDB; in-memory; multi-core; query processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Engineering (ICDE), 2015 IEEE 31st International Conference on
Conference_Location :
Seoul
Type :
conf
DOI :
10.1109/ICDE.2015.7113372
Filename :
7113372
Link To Document :
بازگشت