DocumentCode :
7117
Title :
On 3-Extra Connectivity and 3-Extra Edge Connectivity of Folded Hypercubes
Author :
Nai-Wen Chang ; Cheng-Yen Tsai ; Sun-Yuan Hsieh
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan
Volume :
63
Issue :
6
fYear :
2014
fDate :
Jun-14
Firstpage :
1594
Lastpage :
1600
Abstract :
Given a graph mbiG and a non-negative integer g, the g-extra connectivity (resp. g-extra edge connectivity) of mbiG is the minimum cardinality of a set of vertices (resp. edges) in mbiG, if it exists, whose deletion disconnects mbiG and leaves each remaining component with more than g vertices. This study shows that the 3-extra connectivity (resp. 3-extra edge connectivity) of an mbin-dimensional folded hypercube is 4n - 5 for n ≥ 6 (resp. 4n - 4 for n ≥ 5). This study also provides an upper bound for the g-extra connectivity on folded hypercubes for g ≥ 6.
Keywords :
graph theory; hypercube networks; 3-extra connectivity; 3-extra edge connectivity; folded hypercubes; g-extra connectivity; Fault tolerance; Fault tolerant systems; Hypercubes; Multiprocessing systems; Program processors; Upper bound; Interconnected networks; connectivity; extra connectivity; extra edge connectivity; fault-tolerance; reliability;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.2013.10
Filename :
6409834
Link To Document :
بازگشت