Title :
Superconducting-Semiconductor Quantum Devices: From Qubits to Particle Detectors
Author :
Yun-Pil Shim ; Tahan, Charles
Author_Institution :
Dept. of Phys., Univ. of Maryland, College Park, MD, USA
Abstract :
Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here, we build on a recent proposal to construct superconducting devices such as wires, Josephson junctions, and qubits inside and out-of single crystal silicon or germanium. Using atomistic fabrication techniques such as STM hydrogen lithography, heavily doped superconducting regions within a single crystal could be constructed. We describe the characteristic parameters of basic superconducting elements-a 1-D wire and a tunneling Josephson junction-and estimate the values for boron-doped silicon. The epitaxial, single-crystal nature of these devices, along with the extreme flexibility in device design down to the single-atom scale, may enable lower noise or new types of devices and physics. We consider applications for such supersilicon devices, showing that the state-of-the-art transmon qubit and the sought-after phase-slip qubit can both be realized. The latter qubit leverages the natural high kinetic inductance of these materials. Building on this, we explore how kinetic inductance-based particle detectors (e.g., photon or phonon) could be realized with potential application in astronomy or nanomechanics. We discuss supersemi devices (such as in silicon, germanium, or diamond) which would not require atomistic fabrication approaches and could be realized today.
Keywords :
Josephson effect; SQUIDs; boron; elemental semiconductors; germanium; heavily doped semiconductors; lithography; scanning tunnelling microscopy; semiconductor growth; silicon; superconducting particle detectors; superconducting semiconductors; 1D wire; Ge; STM hydrogen lithography; Si:B; astronomy; atomistic fabrication techniques; boron-doped silicon; device design; epitaxial single-crystal nature; extreme flexibility; heavily doped superconducting regions; kinetic inductance-based particle detectors; material growth; nanomechanics; phase-slip qubit; single crystal germanium; single crystal silicon; single-atom scale; superconducting elements; superconducting-semiconductor quantum devices; supersilicon devices; transmon qubit; tunneling Josephson junction; Crystals; Inductance; Josephson junctions; Kinetic theory; Silicon; Superconducting epitaxial layers; Tunneling; Quantum effect semiconductor devices; semiconductor devices; semiconductor materials; superconducting devices; superconducting materials;
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
DOI :
10.1109/JSTQE.2014.2358208