DocumentCode :
713503
Title :
Sensor deployment for motion trajectory tracking with a genetic algorithm
Author :
Domingo-Perez, Francisco ; Lazaro-Galilea, Jose Luis ; Bravo, Ignacio ; Martin-Gorostiza, Ernesto ; Salido-Monzu, David ; Llana, Alvaro ; Govaers, Felix
Author_Institution :
Dept. of Electron., Univ. of Alcala, Alcala de Henares, Spain
fYear :
2015
fDate :
17-19 March 2015
Firstpage :
3435
Lastpage :
3439
Abstract :
This paper focuses on determining the optimum placement of a given number of sensors for estimating the position of a moving target using range-difference measurements. We define a region of interest and generate several random trajectories with the dynamic white noise acceleration model. After obtaining those trajectories that populate the area we compute the posterior Cramér-Rao lower bound iteratively for each instant of each trajectory. Using that bound we can obtain a global measure of the mean squared error of the estimate of the position and use it as an objective function to be minimized to determine the optimum sensor placement. Finally, we determine that optimum deployment pattern using a genetic algorithm and we include an example of sensor placement using an infrared indoor positioning system.
Keywords :
genetic algorithms; iterative methods; least mean squares methods; position measurement; sensor placement; target tracking; white noise; dynamic white noise acceleration model; genetic algorithm; global measure; iterative method; mean squared error; motion trajectory tracking; moving target position estimation; objective function; optimum deployment pattern; optimum sensor placement; posterior Cramer-Rao lower bound; random trajectory generation; range difference measurement; region of interest; sensor deployment; Genetic algorithms; Optimization; Position measurement; Receivers; Sociology; Statistics; Trajectory; genetic algorithms; infrared sensors; position measurement; sensor placement; target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Technology (ICIT), 2015 IEEE International Conference on
Conference_Location :
Seville
Type :
conf
DOI :
10.1109/ICIT.2015.7125609
Filename :
7125609
Link To Document :
بازگشت