DocumentCode :
71361
Title :
Ferromagnetic Resonance Study of Magnetic Anisotropy in Epitaxial Fe3O4 Thin Film
Author :
Ming Yuan Song ; Lin, J.G. ; Samant, M.G. ; Parkin, S.S.P.
Author_Institution :
Dept. of Phys., Nat. Taiwan Univ., Taipei, Taiwan
Volume :
50
Issue :
11
fYear :
2014
fDate :
Nov. 2014
Firstpage :
1
Lastpage :
3
Abstract :
Ferromagnetic resonance (FMR) is used to investigate the magnetic anisotropy of a 25.5 nm thin Fe3O4 film above and below its Verwey transition temperature (TV). Epitaxial smooth film of Fe3O4 is deposited by oxygen-assisted molecular beam epitaxy. FMR spectra are recorded using a 9.49 GHz Brucker EMX system from 80 K to room temperature with a magnetic field applied along [100] direction. The resonance field (Hr) and linewidth (AH) are extracted by fitting the FMR line with a Lorentzian function. Temperature dependence of Hr and ΔH shows a transition at TV. Furthermore, the data of in-plane angular dependence of Hr at 300 and 83 K indicated a change in symmetry from fourfold to twofold below TV, consistent with a transformation of Fe3O4 from cubic (fourfold) to monoclinic (twofold) structure with its easy axis switching from [110] to [100]. Complex symmetry pattern is found in angular dependence of ΔH below TV, which is attributed to the in-plane twinning of Fe3O4 lattice.
Keywords :
ferromagnetic resonance; iron compounds; magnetic anisotropy; magnetic epitaxial layers; magnetic transition temperature; metal-insulator transition; molecular beam epitaxial growth; plasma materials processing; solid-state phase transformations; twinning; Brucker EMX system; FMR line; Fe3O4; Lorentzian function; MgO; Verwey transition temperature; complex symmetry pattern; cubic-monoclinic structural transformation; easy axis switching; epitaxial magnetite thin film; ferromagnetic resonance; frequency 9.49 GHz; in-plane angular dependence; in-plane twinning; magnetic anisotropy; magnetic transition temperature; oxygen-plasma assisted molecular beam epitaxy; resonance field; resonance linewidth; size 25.5 nm; temperature dependence; Epitaxial growth; Magnetic resonance; Perpendicular magnetic anisotropy; Substrates; TV; Temperature measurement; Magnetic anisotropy; magnetic resonance; thin films;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2014.2324598
Filename :
6971615
Link To Document :
بازگشت