• DocumentCode
    714204
  • Title

    Identification of piezoelectric LuGre model based on particle swarm optimization and real-coded genetic algorithm

  • Author

    Irakoze, R. ; Yakoub, K. ; Kaddouri, A.

  • Author_Institution
    Dept. of Electr. Eng., Univ. of Moncton, Moncton, NB, Canada
  • fYear
    2015
  • fDate
    3-6 May 2015
  • Firstpage
    1451
  • Lastpage
    1457
  • Abstract
    This paper deals with the identification of a piezoelectric actuator model parameters considering LuGre model used in friction modelling. The identification is based on two artificial intelligence techniques: the particle swarm optimization (PSO) and the real-coded genetic algorithm (RGA) techniques. The identification procedure is performed using a high precision actuator. Experiments are carried out to optimize algorithms parameters and a comparison between the two techniques is presented.
  • Keywords
    computerised instrumentation; genetic algorithms; particle swarm optimisation; piezoelectric actuators; PSO; RGA technique; artificial intelligence technique; particle swarm optimization; piezoelectric LuGre model; piezoelectric actuator model parameter; real-coded genetic algorithm; Computational modeling; Friction; Hysteresis; Mathematical model; Piezoelectric actuators; Sociology; Statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical and Computer Engineering (CCECE), 2015 IEEE 28th Canadian Conference on
  • Conference_Location
    Halifax, NS
  • ISSN
    0840-7789
  • Print_ISBN
    978-1-4799-5827-6
  • Type

    conf

  • DOI
    10.1109/CCECE.2015.7129494
  • Filename
    7129494